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Abstract

The Brinkman model is used for the theoretical study of the mixed convection boundary layer flow past a horizontal

circular cylinder with a constant surface temperature and embedded in a fluid-saturated porous medium in a stream

flowing vertically upwards. Both the cases of a heated (assisting flow) and a cooled (opposing flow) cylinder are

considered. It is shown that there are two governing dimensionless parameters, which are related to thermal and viscous

effects. These are the Darcy–Brinkman parameter C and the mixed convection parameter k. It is shown that for C ¼ 0

the problem reduces to the similarity Darcy�s model, while for C 6¼ 0 the governing equations are non-similar and they

have been solved numerically using the Keller-box method. It is found that heating the cylinder (k > 0) delays sepa-

ration of the boundary layer and can, if the cylinder is warm enough (large values of k > 0), suppress it completely. On

the other hand, cooling the cylinder (k < 0) brings the boundary layer separation point nearer to the lower stagnation

point and for sufficiently cold cylinder (large values of k < 0) there will not be a boundary layer on the cylinder. A

complete physical description of the problem is presented throughout the analysis. Some results were given in the form

of tables. Such tables are very important and they can serve as a reference against which other exact or approximate

solutions can be compared in the future.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Convective heat transfer in porous media has been a

subject of great interest for the last several decades. This

interest was motivated by numerous thermal engineering

applications in various disciplines, such as geophysical

thermal and insulation engineering, the modelling of

packed sphere beds, the cooling of electronic systems,

groundwater hydrology, chemical catalytic reactors, ce-

ramic processes, grain storage devices, fiber and granu-

lar insulation, petroleum reservoirs, coal combustors,

ground water pollution and filtration processes, to name

just a few of these applications. Much of the recent work

on this topic is reviewed by Nield and Bejan [1], Ingham

and Pop [2], Vafai [3], and Pop and Ingham [4]. In most

previous studies, either on free or combined convection

in porous media, boundary layer treatments based on

Darcy�s law and Forschheimer––extended Darcy�s law
models have been considered. However, it is well known

that Darcy�s law is an empirical formula relating the

pressure gradient, the bulk viscous resistance and the

gravitational force in a porous medium. Thus, the for-

mulation of convective heat transfer problems based on

Darcy�s law completely neglects the viscous force acting

along the impermeable surface. Fand et al. [5] carried

out an experimental investigation of free convection

from a horizontal circular cylinder embedded in a po-

rous medium, and reported that deviations from the

Darcy�s law occur when the Reynolds number based on

the pore diameter exceeds 1–10. Thus, the non-Darcy
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flow situation is more likely to prevail when the Ray-

leigh number is sufficiently high that the boundary layer

approximations are relevant.

For flow through a porous medium with a high

permeability, Brinkman [6] as well as Chan et al. [7],

argue that the momentum equation for a porous me-

dium flow must reduce to the viscous flow limit and

advocate that classical frictional terms be added in

Darcy�s law. The Brinkman model with the addition of
the convective terms and under the boundary layer ap-

proximation was used by Evans and Plumb [8] for a

numerical study of free convection about an isothermal

vertical flat plate embedded in a porous medium. Their

numerical results show that the value of the local Nus-

selt number is in agreement with the Cheng–Minkowycz

theory [9] (based on the Darcy�s law) if the Darcy

number based on the length of the plate is less than 10�7.

For higher values of the Darcy number, they found that

their numerical results for the local Nusselt number are

slightly smaller than those given by the Cheng–Minko-

wycz theory [9] for the free convection boundary layer

along a vertical flat plate embedded in a porous medium.

Vafai and Tien [10] used the Brinkman model to study

the problem of forced convection over an impermeable

heated plate embedded in a porous medium. They de-

fined a momentum boundary layer as the layer adjacent

to the surface where the viscous effect on the surface and

the bulk viscous force are equally important. The exis-

tence of the momentum boundary layer near the heated

surface was shown to retard the streamwise velocity

close to the wall, resulting in a decrease of the surface

heat flux. The effect is found to be most pronounced

near the leading edge of the plate and in a fluid with a

high Prandtl number. The Brinkman model was also

used by Hsu and Cheng [11], Kim and Vafai [12], and

Hong et al. [13] to study the boundary effects in a free

convection porous layer adjacent to a semi-infinite ver-

tical flat plate with a power law variation of wall tem-

perature, i.e. xm, where x measures the distance along the
plate and m is a constant. It was shown that the non-

dimensional governing equations contain two small pa-

rameters e and r, where e ¼ ðRaÞ�1=2 and r ¼ ðDa=/Þ1=2,
with Ra and Da being the Rayleigh number and the

Darcy number, respectively, and / is the porosity of the

porous medium. For the limit of e ! 0, r ! 0 and

r � e, a perturbation solution for the problem is ob-

tained using the method of matched asymptotic expan-

sions. It is shown that the physical problem consists of

three layers: the inner viscous sub-layer with a thickness

of OðrÞ, which has been called by Vafai and Tien [10], as
the momentum boundary layer; the middle thermal layer

with a thickness of OðeÞ; and the outer potential region
with a thickness of Oð1Þ. Chen et al. [14] studied the

problem of mixed convection boundary layer flow about

a vertical cylinder embedded in a porous medium by

taking the non-Darcian effects into consideration, while

Hossain et al. [15] studied the non-Darcy forced con-

vection boundary layer flow over a wedge embedded in a

Nomenclature

a radius of the cylinder

Cf skin friction coefficient

Da Darcy number based on a
f reduced stream function

g gravitational acceleration

K permeability of the porous medium

Nu Nusselt number

p pressure

Pe P�eeclet number
Pr Prandtl number

Ra Rayleigh number for a porous medium

T fluid temperature

u dimensionless velocity in the x-direction
ueðxÞ dimensionless free stream velocity

v dimensionless velocity in the y-direction
x, y dimensionless Cartesian coordinates along

the surface of the cylinder and normal to it,

respectively

Greek symbols

am effective thermal diffusivity of porous me-

dium

b thermal expansion coefficient

di1, di2 delta Kronecker operators

C Darcy–Brinkman parameter

/ porosity

g transformed variable

k mixed convection parameter

l dynamic viscosity of the fluid

m kinematic viscosity of the fluid

h dimensionless fluid temperature

q density

w dimensionless stream function

Superscripts

– dimensional quantities
0 differentiation with respect to y or g

Subscripts

w condition at the wall

1 ambient condition
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porous medium and discussed the effects of the con-

vective inertia term, Forschheimer term (or porous in-

ertia term), and the Brinkman term (or boundary

friction term) on the skin friction and the rate of heat

transfer.

In this paper, we use the transformations proposed

by Merkin [16] for the mixed convection boundary layer

flow past a horizontal circular cylinder immersed in a

viscous (non-porous) and incompressible fluid to study

the problem of mixed convection boundary layer flow

past a horizontal circular cylinder embedded in a porous

medium using the Brinkman model. It is shown that the

solution depends on the non-dimensional Darcy–

Brinkman parameter C and the mixed convection para-

meter k with k > 0 for a heated cylinder (Tw > T1) and
k < 0 for a cooled cylinder (Tw < T1), respectively. The
case k ¼ 0 is the forced convection solution. The para-

meter C represents the effect of viscous layer on the

thermal layer, while k represents the effect of forced to
free convection. For small values of jkj forced convec-
tion effects dominate, while for large values of jkj it is the
free convection which is important, so that values of k of
Oð1Þ, where both effects are comparable, are of most

interest. Letting C ¼ 0 is equivalent to neglecting the

viscous layer effect and the problem reduces to that of

mixed convection boundary layer flow about a hori-

zontal cylinder embedded in a Darcian porous medium,

which is first studied by Cheng [17] using a similarity

transformation. For C 6¼ 0 we have solved numerically

the transformed non-similar boundary layer equations

using the Keller-box method [18]. This method has been

very successfully recently used by the present authors

[19–21] for solving some analogous problems for viscous

fluids and also for micropolar fluids. Both the cases

k > 0 (assisting flow) and k < 0 (opposing flow) are

discussed in the present paper. We found that for C 6¼ 0

and k > 0 both the forced and free convection boundary

layers start at the lower (bottom) stagnation point of the

cylinder with the buoyancy forces accelerating the fluid

in the boundary layer. There is a value of k ¼ ksðCÞ (say)
for which the boundary layer starts to separate. For

k > ksðCÞ, the boundary layer remains on the cylinder
and starts to separate just before the upper (top) stag-

nation point (x ¼ p) to form a plume. This situation is

different from that found by Merkin [16], where the

boundary layer remains on the cylinder up to the upper

stagnation point (x ¼ p). For C 6¼ 0 and k < 0, on the

other hand, the buoyancy forces also retard the fluid and

so the separation point is brought nearer to the lower

stagnation point. A value of k ¼ k0ðCÞ (say) is found for
which the boundary layer separates at this point and it is

shown that for values of k less than k0ðCÞ a boundary
layer solution is not possible. However, the actual value

of ksðCÞ which first gives no separation is difficult to

determine exactly, while the value of k0ðCÞ can be ex-
actly determined. Further, we have shown that for very

small value of C, or Darcy flow model, the present re-

sults are in very good agreement with those obtained by

solving the similarity equations found by Cheng [17].

Thus, the results are believed to be very consistent

which, potentially, make them of importance to future

theoretical studies of convective flow problems in porous

media. To our best knowledge the present problem has

not been considered before and we believe that the re-

sults reported here are important for some geophysical

and engineering applications.

2. Basic equations

Consider the problem of steady mixed convection

flow past a horizontal circular cylinder of radius a em-
bedded in a fluid-saturated porous medium as shown in

Fig. 1, where �xx is the coordinate in the streamwise di-
rection along the surface of the cylinder measured from

the lower stagnation point, and �yy is the coordinate

normal to the surface. It is assumed that the surface of

the cylinder is held at a constant temperature Tw, while
the ambient temperature is T1. It is also assumed that a
free stream (1/2)u1 is flowing vertically upwards over

the cylinder so that the free stream velocity for the

boundary layer is �uueð�xxÞ ¼ u1 sinð�xx=aÞ. Under the Bous-
sinesq approximation, the governing equations with in-

ertia and thermal dispersion effects neglected are (see [1])

o�uu
o�xx

þ o�vv
o�yy

¼ 0 ð1Þ

l
K
�uu ¼ l

/
o2�uu
o�xx2

 
þ o2�uu

o�yy2

!
� op

o�xx
� qg sinð�xx=aÞ ð2Þ

Fig. 1. Physical model and coordinate system.
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l
K
�vv ¼ l

/
o2�vv
o�xx2

 
þ o2�vv
o�yy2

!
� op

o�yy
þ qg cosð�xx=aÞ ð3Þ

q ¼ q1½1� bðT � T1Þ
 ð4Þ

�uu
oT
o�xx

þ �vv
oT
o�yy

¼ am
o2T
o�xx2

 
þ o2T

o�yy2

!
ð5Þ

subject to the boundary conditions

�uu ¼ �vv ¼ 0; T ¼ Tw on �yy ¼ 0

�uu ! �uueð�xxÞ; T ! T1 as �yy ! 1
ð6Þ

where �uu and �vv are the velocity components along �xx- and
�yy-axes, respectively, T is the fluid temperature, p is the
pressure, K is the permeability of the porous medium, g
is the acceleration due to gravity, am is the effective

thermal diffusivity of the porous medium, b is the ther-
mal expansion coefficient, q is the density, l is the dy-

namic viscosity of the fluid and / is the porosity of the

porous medium.

We introduce now the boundary layer variables

x ¼ �xx=a; y ¼ Pe1=2ð�yy=aÞ; u ¼ �uu=u1; v ¼ Pe1=2ð�vv=u1Þ;
h ¼ ðT � T1Þ=ðTw � T Þ1; ueðxÞ ¼ �uueð�xxÞ=u1

ð7Þ

where Pe ¼ u1a=am is the modified P�eeclet number for a
porous medium.

If we eliminate the pressure p from Eqs. (2) and (3),

and assume that Pe ! 1 (boundary layer approxima-

tion), Eqs. (1)–(5) can be reduced to the following di-

mensionless form

ou
ox

þ ov
oy

¼ 0 ð8Þ

ou
oy

¼ C
o3u
oy3

þ k
oh
oy
sin x ð9Þ

u
oh
ox

þ v
oh
oy

¼ o2h
oy2

ð10Þ

while the boundary conditions (6) become

u ¼ v ¼ 0; h ¼ 1 on y ¼ 0

u ! ueðxÞ; h ! 0 as y ! 1
ð11Þ

where the Darcy–Brinkman parameter C and the mixed

convection parameter k are given by

C ¼ Da
/

Pe; k ¼ Ra
Pe

ð12Þ

with Da and Ra being the Darcy and the Rayleigh

numbers, respectively, which are defined as

Da ¼ K
a2

; Ra ¼ gKbðTw � T1Þa
amm

ð13Þ

Further, if we integrate once Eq. (9) subject to the

boundary conditions (11) and introduce the stream

function w defined as

u ¼ ow
oy

; v ¼ � ow
ox

ð14Þ

Eqs. (9) and (10) can then be written as

ow
oy

� ueðxÞ ¼ C
o3w
oy3

þ kh sin x ð15Þ

ow
oy

oh
ox

� ow
ox

oh
oy

¼ o2h
oy2

ð16Þ

and the boundary conditions (11) become

w ¼ ow
oy

¼ 0; h ¼ 1 on y ¼ 0

ow
oy

! ueðxÞ; h ! 0 as y ! 1
ð17Þ

where ueðxÞ ¼ sin x. We notice that for C ¼ 0 (Darcy�s
model), Eqs. (15)–(17) can be reduced to the similarity

equations found by Cheng [17] (except a factor of 1/2,

which can be scaled out from these equations) and they

can be written as

f 0 ¼ 1þ kh ð18Þ

h00 þ f h0 ¼ 0

subject to the boundary conditions

f ð0Þ ¼ 0; hð0Þ ¼ 1

f 0ð1Þ ¼ 1; hð1Þ ¼ 0
ð19Þ

or

f 000 þ ff 00 ¼ 0 ð20Þ

subject to the boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1þ k; f 0ð1Þ ¼ 1 ð21Þ

where primes denote differentiation with respect to y.
We look now for a solution of Eqs. (15) and (16) of

the form proposed by Merkin [16]

w ¼ xf ðx; yÞ; h ¼ hðx; yÞ ð22Þ

Then, we have to solve the following equations

C
o3f
oy3

þ of
oy

¼ ð1þ khÞ sin x
x

ð23Þ

o2h
oy2

þ f
oh
oy

¼ x
of
oy

oh
ox

�
� of

ox
oh
oy

�
ð24Þ

along with the boundary conditions

f ¼ of
oy

¼ 0; h ¼ 1 on y ¼ 0

of
oy

! sin x
ox

; h ! 0 as y ! 1
ð25Þ
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The physical quantities of interest in this problem are

the skin friction coefficient Cf and the Nusselt number
Nu, which can be expressed as

ðPe1=2=PrÞCf ¼ x
o2f
oy2

ðx; 0Þ; Nu=Pe1=2 ¼ � oh
oy

ðx; 0Þ

ð26Þ

where Pr ¼ t=am is the Prandtl number for the porous

medium.

At the lower stagnation point of the cylinder, x ffi 0,

Eqs. (23) and (24) reduce to the following ordinary

differential equations

Cf 000 � f 0 þ 1þ kh ¼ 0 ð27Þ

h00 þ f h0 ¼ 0 ð28Þ

subject to

f ð0Þ ¼ f 0ð0Þ ¼ 0; hð0Þ ¼ 1

f 0 ! 1; h ! 0 as y ! 1
ð29Þ

For C 6¼ 0, k > 0 and k � 1, we introduce the fol-

lowing transformation

f ¼ k1=4F ðgÞ; h ¼ GðgÞ; g ¼ k1=4y ð30Þ

Eqs. (27) and (28) then become

CF 000 þ G� F 0k�1=2 þ k�1 ¼ 0 ð31Þ

G00 þ FG0 ¼ 0 ð32Þ

subject to

F ð0Þ ¼ F 0ð0Þ ¼ 0; Gð0Þ ¼ 1

F 0 ! k�1=2; G ! 0 as g ! 1
ð33Þ

We look now for a solution of Eqs. (31) and (32) of

the form

F ¼ F0ðgÞ þ F1ðgÞk�1=2 þ F2ðgÞk�1 þ h:o:t:

G ¼ G0ðgÞ þ G1ðgÞk�1=2 þ G2ðgÞk�1 þ h:o:t:
ð34Þ

for k � 1, where the functions F0 and G0 are given by

the equations

CF 000
0 þ G0 ¼ 0 ð35Þ

G00
0 þ F0G0

0 ¼ 0 ð36Þ

subject to

F0ð0Þ ¼ F 0
0ð0Þ ¼ 0; G0ð0Þ ¼ 1

F 0
0 ! 0; G0 ! 0 as g ! 1

ð37Þ

We notice that these equations describe the free

convection near the lower stagnation point of a circular

cylinder embedded in a fluid-saturated porous medium

based on the Brinkman model (C 6¼ 0). Further, the

functions Fi and Gi (iP 1) are given by the equations

CF 000
i � F 0

i�1 þ Gi þ di2 ¼ 0 ð38Þ

G00
i þ

Xi

j¼0
Fi�jG0

i ¼ 0 ð39Þ

subject to

Fið0Þ ¼ F 0
i ð0Þ ¼ 0; Gið0Þ ¼ 0

F 0
i ! di1; Gi ! 0 as g ! 1

ð40Þ

where di1 and di2 are the delta Kronecker operators.

Therefore, we have

f 00ð0Þ ¼ k3=4½F 00
0 ð0Þ þ F 00

1 ð0Þk
�1=2 þ F 00

2 ð0Þk
�1 þ h:o:t


h0ð0Þ ¼ k3=4½G0
0ð0Þ þ G0

1ð0Þk
�1=2 þ G0

2ð0Þk
�1 þ h:o:t


ð41Þ

for k � 1.

3. Results and discussion

The transformed non-similar boundary layer Eqs.

(23) and (24) subject to the boundary conditions (25) are

solved numerically for different values of the parameters

C and k, and at some streamwise positions x using the
Keller-box method as described by Cebeci and Brad-

shaw [18]. The ordinary differential equations (18)–(21)

for the Darcy�s flow model (C ¼ 0) as well as Eqs. (27)–

(29) and (35)–(40), valid at the lower stagnation point of

the cylinder (x ffi 0), are also solved numerically using

the Keller-box method. In order to check our solution,

we have calculated the heat transfer from the cylinder,

�h0ð0Þ, by solving Eqs. (18) and (19) for some values of
the parameter k in the range �16 k6 20 and compared
these results with those reported by Cheng [22] (with a

factor of 1/2). Some values of �h0ð0Þ are given in Table 1
and we can see that the agreement between these solu-

tions is excellent. Further, it is worth mentioning that in

Table 1

Values of �h0ð0Þ for C ¼ 0 (Darcy model) and various values of

k

k Ref. [22] Present (Keller-box)

)1.0 0.3320 0.3321

)0.8 0.3916 0.3917

)0.6 0.4420 0.4421

)0.4 0.4865 0.4866

)0.2 0.5269 0.5270

0.0 0.5641 0.5642

0.5 0.6473 0.6474

1.0 0.7205 0.7206

3.0 0.9574 0.9576

10.0 1.516 1.5167

20.0 2.066 2.067
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the assisting case (k > 0), solutions of Eqs. (18) and (19)

are possible for all values of k. However, for opposing
flow (k < 0), Merkin [23] was the first to show that a

solution of Eqs. (20) and (21) is possible only for a

limited range values of k, namely �1:3546 k6 0. For
�1:354 < k < �1 the solution is non-unique and two

values of the reduced skin friction coefficient, f 00ð0Þ exist
for a given value of k as can be seen from Table 2. It is

seen again from this table that our results are in very

good agreement with those found by Merkin [23].

Further, we have calculated in Table 3 values of the

reduced skin friction coefficient, f 00ð0Þ, and wall heat

transfer, �h0ð0Þ, for some values of the parameter C
when C ¼ 0 (Darcy model) and when C 6¼ 0 (Brinkman

model), respectively, by solving Eqs. (27)–(29) valid at

the lower stagnation point (x ffi 0). Only small values of

Cð� 1Þ were considered as it is the case that usually

exists in geophysical and engineering applications (see

[11]). The results obtained by Cheng [22] for the Darcy

flowmodel (C ¼ 0) were also included in this table. It can

be seen from this table that for the Darcy flow model

(C ¼ 0) the results are again in excellent agreement. This

table shows further that for large values of the mixed

convection parameter kð� 1Þ the numerical and series
solutions given by (41), are also in a good agreement.

Therefore, we are confident that the present results are

accurate enough.

Some values of the skin friction coefficient,

ðPe1=2=PrÞCf , and the Nusselt number, Nu=Pe1=2, are gi-
ven in Tables 4–7 and presented in Figs. 2–8 for some

values of C, k and x. These tables and figures show that

the boundary layer separates from the cylinder for some

values of k < 0 (opposing flow). Increasing k delays

separation and the separation can be completely sup-

pressed in the range 06 x < p for sufficiently large val-

ues of k. A value of k ¼ k0ðCÞð< 0Þ is found below

which the boundary layer solution is not possible.

However, there is a value of k ¼ ksðCÞð< 0Þ for which
the boundary layer starts to separate. It is seen further

from Tables 4–7 and Figs. 2–8 that the value of ksðCÞ

which first gives no separation lies between )1.03 and
)1.02 for C ¼ 0:1, and between )1.06 and )1.05 for

C ¼ 0:3. For k > ksðCÞ, the boundary layer remains on
the cylinder and starts to separate just before the upper

(top) stagnation point (x ¼ p) to form a plume where

values of the skin friction and the heat transfer be-

come negative, as can be seen from Tables 4–7 and Figs.

2–8. This situation is different from that found by

Merkin [16] for the corresponding problem in a viscous

(non-porous medium) fluid, where the boundary layer

remains on the cylinder up to the upper stagnation

point.

Further, we mention that we have obtained also the

velocity and temperature profiles for some values of the

Darcy–Brinkman and mixed convection parameters C
and k, respectively, at different x positions around the
cylinder but for the sake of saving space we will not

present these profiles here. Thus, it was found that the

velocity profiles and the skin friction decrease with

the increase of C as can be seen from Fig. 7. However,

the temperature profiles increase with increasing C.
Thus, the thermal boundary layer thickness is increased,

the temperature gradient at the wall is decreased and the

heat transfer rate is reduced as can be seen from Fig. 8.

This is because when C becomes larger, the Darcy re-

sistance due to the presence of the solid matrix is dom-

inant, and the effect of the no-slip condition is restricted

in a viscous layer. When the thickness of this viscous

layer is much smaller than the thickness of the thermal

boundary layer, the no-slip condition can be neglected

and Darcy�s model can be employed [13].
Finally, Figs. 9 and 10 show the variation of the

separation point with kð< 0Þ for C ¼ 0:1 and 0.3. The
actual value of ksðCÞð< 0Þ which first gives no separa-
tion is difficult to determine exactly as it has to be found

by successive integrations of the equations. These figures

also show that there is a value of k ¼ k0ðCÞð< 0Þ below
which a boundary layer solution is not possible. It is also

seen from these figures that the value of ksðCÞð< 0Þ and
k0ðCÞð< 0Þ increases with increasing the value of C.

Table 2

Values of f 00ð0Þ for different values of kð< 0Þ
k Ref. [23] Present (Keller-box)

f 00
1 ð0Þ f 00

2 ð0Þ f 00
1 ð0Þ f 00

2 ð0Þ
)1.00 0.46960 0.46960

)1.05 0.46758 0.00004 0.46759 0.00001

)1.10 0.46105 0.00194 0.46106 0.00190

)1.15 0.44907 0.00866 0.44909 0.00866

)1.20 0.43015 0.02219 0.43017 0.02218

)1.25 0.40152 0.04539 0.40156 0.04538

)1.30 0.35664 0.08497 0.35684 0.08487

)1.35 0.25758 0.17856 0.26240 0.17851

)1.354 0.22428 0.23274
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Table 3

Values of f 00ð0Þ and �h0ð0Þ at the lower stagnation point of the cylinder (x ffi 0) for C ¼ 0, 0.1, 0.2 and 0.3, and various values of k

k Darcy

model [22]

C ¼ 0 (pre-

sent)

C ¼ 0:1 C ¼ 0:2 C ¼ 0:3

Numerical

(Keller-

box)

Numerical

Eqs. (27)

and (28)

(Keller-box)

Numerical Eqs. (27)

and (28)

Series Eq. (41) Numerical Eqs. (27)

and (28)

Series Eq. (41) Numerical Eqs. (27)

and (28)

Series Eq. (41)

�h0ð0Þ �h0ð0Þ f 00ð0Þ �h0ð0Þ f 00ð0Þ �h0ð0Þ f 00ð0Þ �h0ð0Þ f 00ð0Þ �h0ð0Þ f 00ð0Þ �h0ð0Þ f 00ð0Þ �h0ð0Þ
)1.27 )0.0132 0.3878

)1.26 0.0046 0.3909

)1.25 0.0223 0.3940

)1.22 )0.0133 0.3987 0.0746 0.4028

)1.21 0.0087 0.4020 0.0918 0.4056

)1.20 0.0305 0.4052 0.1089 0.4083

)1.16 )0.0299 0.4130 0.1168 0.4176 0.1764 0.4189

)1.15 0.0016 0.4166 0.1380 0.4206 0.1930 0.4215

)1.1 0.4192 0.4193 0.1569 0.4339 0.2429 0.4347 0.2750 0.4337

)1.0 0.4697 0.4698 0.4588 0.4647 0.4460 0.4600 0.4339 0.4558

)0.5 0.6575 0.6576 1.8619 0.5781 1.3806 0.5549 1.1624 0.5396

0.0 0.7980 0.7980 3.1623 0.6976 2.2361 0.6652 1.8257 0.6426

0.5 0.9157 0.9156 4.3999 0.7240 3.0437 0.6784 2.4497 0.6500

1.0 1.0192 1.0191 5.5923 0.7791 3.8173 0.7251 3.0457 0.6919

2.0 1.1988 1.1987 7.8768 0.8706 5.2901 0.8026 4.1768 0.7616

3.0 1.3543 1.3541 10.0613 0.9460 10.3375 1.1864 6.6897 0.8663 6.8509 1.0308 5.2485 0.8190 5.4772 0.9353

4.0 1.4934 1.4932 12.1697 1.0107 12.3970 1.2167 8.0344 0.9210 8.2004 1.0796 6.2759 0.8683 6.4021 0.9792

5.0 1.6204 1.6202 14.2167 1.0678 14.4434 1.2469 9.3354 0.9693 9.4522 1.1022 7.2681 0.9117 7.4052 1.0071

6.0 1.7382 1.7380 16.2124 1.1191 16.3674 1.2799 10.6002 1.0126 10.7176 1.1448 8.2313 0.9508 8.3410 1.0355

7.0 1.8484 1.8481 18.1642 1.1658 18.2118 1.3034 11.8341 1.0521 11.8494 1.1763 9.1699 0.9864 9.2765 1.0632

8.0 1.9523 1.9520 20.0774 1.2089 20.0728 1.3362 13.0413 1.0885 13.0001 1.2063 10.0872 1.0192 10.0553 1.0897

9.0 2.0510 2.0505 21.9566 1.2489 21.9478 1.3604 14.2248 1.1222 14.1090 1.2349 10.9858 1.0496 10.9050 1.1150

10.0 2.1451 2.1444 23.8051 1.2863 23.7343 1.3948 15.3871 1.1538 15.2356 1.2521 11.8676 1.0780 11.6663 1.1391

20.0 2.9243 2.9223 41.0660 1.5720 40.4810 1.6771 26.1781 1.3945 25.2752 1.4769 20.0297 1.2951 19.3719 1.3307
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4. Conclusions

Mixed convection boundary layer flow from a hori-

zontal circular cylinder embedded in a fluid-saturated

porous medium using the Brinkman model has been

analyzed in detail. The numerical solutions of the gov-

erning equations have been obtained using the Keller-

box method and the results are presented over the range

of physically relevant buoyancy parameter values

k > k0ðCÞ, which model the case in which the buoyancy
forces are both assisting and opposing the free stream.

We have sought to determine how the mixed convection

parameter k and the Darcy–Brinkman parameter C af-

fect the flow and heat transfer characteristics as well as

the position of the boundary layer separation point xs.
From this study we can draw the following conclusions:

• the flow and heat transfer characteristics predicted by

considering the Brinkman model differ significantly

from those based on Darcy�s law. In this case the ve-
locity in the boundary layer is reduced, resulting in a

lower heat transfer rate;

Table 5

Values of the local Nusselt number Nu=Pe1=2 for C ¼ 0:1 and various values of k

x k

)1.13 )1.10 )1.03 )1.02 )1.0 )0.5 0.0 1.0 2.0 5.0 10.0

0.0 0.4237 0.4339 0.4559 0.4589 0.4647 0.5781 0.6976 0.7791 0.8706 1.0678 1.2863

0.2 0.4210 0.4312 0.4532 0.4562 0.4620 0.5752 0.6734 0.7758 0.8671 1.0638 1.2818

0.4 0.4138 0.4241 0.4461 0.4491 0.4549 0.5676 0.6505 0.7670 0.8577 1.0531 1.2697

0.6 0.4125 0.4345 0.4374 0.4432 0.5552 0.6360 0.7527 0.8428 1.0357 1.2500

0.8 0.3966 0.4185 0.4215 0.4237 0.5383 0.6174 0.7328 0.8212 1.0115 1.2226

1.0 0.3765 0.3984 0.4013 0.4071 0.5167 0.5941 0.7074 0.7940 0.9805 1.1874

1.2 0.3524 0.3742 0.3771 0.3828 0.4905 0.5660 0.6765 0.7608 0.9426 1.1443

1.4 0.3245 0.3462 0.3491 0.3547 0.4597 0.5331 0.6399 0.7215 0.8975 1.0930

1.6 0.2932 0.3147 0.3175 0.3230 0.4246 0.4953 0.5976 0.6759 0.8451 1.0331

1.8 0.2799 0.2826 0.2879 0.3851 0.4526 0.5495 0.6239 0.7849 0.9640

2.0 0.2421 0.2448 0.2499 0.3415 0.4050 0.4953 0.5651 0.7163 0.8851

2.2 0.2019 0.2044 0.2092 0.2936 0.3524 0.4347 0.4989 0.6385 0.7949

2.4 0.1598 0.1621 0.1664 0.2416 0.2943 0.3670 0.4244 0.5499 0.6914

2.6 0.1169 0.1187 0.1222 0.1851 0.2302 0.2909 0.3399 0.4478 0.5708

2.8 0.0803 0.0801 0.0807 0.1235 0.1585 0.2040 0.2419 0.3268 0.4251

3.0 0.0712 0.0660 0.0544 0.0747 0.0986 0.1204 0.1706 0.2309

p 0.0709 0.0658 )0.0020 )0.0102 )0.0110 )0.0128 )0.0162 )0.0183

Table 4

Values of the skin friction coefficient ðPe1=2=PrÞCf for C ¼ 0:1 and various values of k

x k

)1.13 )1.10 )1.03 )1.02 )1.0 )0.5 0.0 1.0 2.0 5.0 10.0

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2 0.0121 0.0306 0.0727 0.0787 0.0905 0.3691 0.6274 1.1101 1.5639 2.8236 4.7290

0.4 0.0207 0.0569 0.1397 0.1513 0.1745 0.7212 1.2281 2.1759 3.0673 5.5424 9.2879

0.6 0.0754 0.1958 0.2127 0.2464 1.0411 1.7782 3.1573 4.4552 8.0614 13.5223

0.8 0.0836 0.2371 0.2587 0.3017 1.3151 2.2558 4.0175 5.6768 10.2913 17.2863

1.0 0.0800 0.2609 0.2864 0.3371 1.5318 2.6419 4.7234 6.6862 12.1514 20.4469

1.2 0.0645 0.2661 0.2945 0.3510 1.6823 2.9212 5.2477 7.4446 13.5716 22.8875

1.4 0.0388 0.2534 0.2836 0.3437 1.7610 3.0825 5.5691 7.9214 14.4946 24.5108

1.6 0.0058 0.2250 0.2558 0.3171 1.7657 3.1196 5.6736 8.0948 14.8777 25.2415

1.8 0.1846 0.2149 0.2750 1.6973 3.0310 5.5545 7.9532 14.6939 25.0278

2.0 0.1375 0.1658 0.2223 1.5605 2.8204 5.2132 7.4953 13.9324 23.8426

2.2 0.0891 0.1145 0.1648 1.3627 2.4962 4.6590 6.7300 12.5991 21.6831

2.4 0.0456 0.0668 0.1088 1.1141 2.0716 3.9087 5.6765 10.7161 18.5695

2.6 0.0126 0.0285 0.0603 0.8270 1.5634 2.9862 4.3637 8.3202 14.5410

2.8 0.0038 0.0058 0.0253 0.5152 0.9922 1.9217 2.8288 5.4599 9.6478

3.0 0.0011 0.0080 0.1935 0.3807 0.7499 1.1143 2.1865 3.9261

p )0.0002 )0.0013 )0.0311 )0.0621 )0.1240 )0.1858 )0.3706 )0.6747
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Table 6

Values of the skin friction coefficient ðPe1=2=PrÞCf for C ¼ 0:3 and various values of k

x k

)1.25 )1.20 )1.15 )1.10 )1.06 )1.05 )1.0 )0.5 0.0 1.0 2.0 5.0 10.0

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2 0.0039 0.0211 0.0378 0.0541 0.0669 0.0701 0.0857 0.2304 0.3622 0.6047 0.8294 1.4438 2.3594

0.4 0.0046 0.0385 0.0714 0.1035 0.1286 0.1348 0.1656 0.4500 0.7091 1.1856 1.6275 2.8356 4.6366

0.6 0.0490 0.0971 0.1439 0.1806 0.1897 0.2346 0.6492 1.0267 1.7213 2.3657 4.1282 6.7569

0.8 0.0502 0.1120 0.1722 0.2192 0.2309 0.2884 0.8193 1.3025 2.1919 3.0175 5.2770 8.6495

1.0 0.0407 0.1145 0.1860 0.2419 0.2557 0.3239 0.9530 1.5254 2.5797 3.5591 6.2416 10.2497

1.2 0.1039 0.1844 0.2473 0.2628 0.3394 1.0448 1.6866 2.8698 3.9700 6.9867 11.5001

1.4 0.0812 0.1681 0.2357 0.2524 0.3347 1.0912 1.7798 3.0507 4.2339 7.4828 12.3523

1.6 0.0490 0.1392 0.2091 0.2264 0.3113 1.0910 1.8012 3.1143 4.3387 7.7075 12.7676

1.8 0.1014 0.1709 0.1880 0.2723 1.0451 1.7501 3.0567 4.2776 7.6452 12.7182

2.0 0.0597 0.1259 0.1422 0.2223 0.9566 1.6286 2.8777 4.0485 7.2881 12.1866

2.2 0.0206 0.0801 0.0948 0.1670 0.8309 1.4414 2.5816 3.6542 6.6352 11.1658

2.4 0.0401 0.0523 0.1127 0.6750 1.1963 2.1759 3.1023 5.6920 9.6570

2.6 0.0125 0.0213 0.0660 0.4972 0.9030 1.6720 2.4046 4.4689 7.6666

2.8 0.0007 0.0058 0.0321 0.3069 0.5732 1.0841 1.5756 2.9776 5.1976

3.0 0.0012 0.0106 0.1142 0.2202 0.4277 0.6306 1.2209 2.2249

p 0.0004 )0.0011 )0.0177 )0.0354 )0.0710 )0.1064 )0.2120 )0.2720

Table 7

Values of the local Nusselt number Nu=Pe1=2 for C ¼ 0:3 and various values of k

x k

)1.25 )1.20 )1.15 )1.10 )1.06 )1.05 )1.0 )0.5 0.0 1.0 2.0 5.0 10.0

0.0 0.3943 0.4086 0.4217 0.4339 0.4430 0.4452 0.4559 0.5397 0.5257 0.6919 0.7616 0.9117 1.0795

0.2 0.3916 0.4060 0.4191 0.4313 0.4405 0.4427 0.4534 0.5372 0.5936 0.6892 0.7588 0.9086 1.0760

0.4 0.3843 0.3989 0.4122 0.4245 0.4338 0.4360 0.4467 0.5305 0.5905 0.6820 0.7512 0.9002 1.0667

0.6 0.3875 0.4011 0.4135 0.4228 0.4251 0.4359 0.5197 0.5798 0.6702 0.7388 0.8865 1.0515

0.8 0.3718 0.3857 0.3983 0.4078 0.4100 0.4209 0.5048 0.5646 0.6539 0.7217 0.8675 1.0303

1.0 0.3517 0.3661 0.3791 0.3886 0.3909 0.4020 0.4858 0.5450 0.6330 0.6997 0.8430 1.0032

1.2 0.3425 0.3558 0.3656 0.3679 0.3791 0.4626 0.5212 0.6075 0.6728 0.8131 0.9698

1.4 0.3149 0.3287 0.3387 0.3411 0.3524 0.4354 0.4931 0.5773 0.6410 0.7774 0.9301

1.6 0.2836 0.2980 0.3082 0.3106 0.3220 0.4042 0.4608 0.5422 0.6039 0.7359 0.8838

1.8 0.2640 0.2744 0.2768 0.2883 0.3690 0.4241 0.5022 0.5615 0.6881 0.8302

2.0 0.2273 0.2378 0.2402 0.2516 0.3299 0.3829 0.4569 0.5133 0.6334 0.7688

2.2 0.1891 0.1991 0.2015 0.2124 0.2867 0.3370 0.4059 0.4586 0.5710 0.6984

2.4 0.1604 0.1624 0.1719 0.2394 0.2859 0.3482 0.3964 0.4992 0.6170

2.6 0.1259 0.1268 0.1324 0.1875 0.2287 0.2824 0.3246 0.4153 0.5211

2.8 0.1037 0.1028 0.1002 0.1303 0.1633 0.2051 0.2393 0.3132 0.4033

3.0 0.0923 0.0834 0.0655 0.0840 0.1067 0.1278 0.1747 0.2410

p 0.0888 0.0784 0.0144 )0.0022 )0.0077 )0.0098 )0.0128 0.0302
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Fig. 2. Variation of the local Nusselt number with x for C ¼ 0

and various values of k.

Fig. 3. Variation of the skin friction coefficient with x for

C ¼ 0:1 and various values of k.

Fig. 4. Variation of the local Nusselt number with x for C ¼ 0:1

and various values of k.

Fig. 5. Variation of the skin friction coefficient with x for

C ¼ 0:3 and various values of k.

Fig. 6. Variation of the local Nusselt number with x for C ¼ 0:3

and various values of k.

Fig. 7. Variation of the skin friction coefficient with x for

C ¼ 0:1, 0.2, 0.3 and k ¼ 1, )0.5.
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• an increase in the value of C leads to a decrease of the
wall heat transfer and the skin friction coefficient;

• an increase in the value of C leads to an increase of

the value of k ¼ ksðCÞð< 0Þ which first gives no sepa-
ration. The increase of C also leads to an increase of

k0ðCÞð< 0Þ below which a boundary layer solution is

not possible.
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